Ett sätt att kontrollera kvaliteten på din efterfrågan är att beräkna prognosfelet. Ett prognosfel är avvikelsen av den faktiska efterfrågan från den prognostiserade efterfrågan. Om du kan beräkna felnivån i dina tidigare prognoser, kan du ta med detta i framtida och på så sätt göra relevanta justeringar av din planering.
I den här artikeln visar vi dig hur du mäter noggrannheten i dina prognoser, genom att beräkna prognosfel.
Noggranna efterfrågeprognoser kommer hjälper dig att:
Det finns flera olika formler som används för att beräkna prognosnoggrannhet och prognosfel. Allt från ganska enkla metoder till de väldigt komplexa. Två av de vanligaste metoderna kallas MAPE (the Mean Absolute Percent Error) och MAD – (the Mean Absolute Deviation).
Låt oss titta närmare på båda.
Ett annat vanligt sätt att beräkna prognosfel är att beräkna MAD (Mean Absolute Deviation). Denna formel visar avvikelsen av den prognostiserade efterfrågan från den faktiska efterfrågan i enheter. Den beräknar medelvärdet av det absoluta prognosfelet under de prognostiserade tidsperioderna.
Det ”absoluta prognosfelet” betyder att även när skillnaden mellan den faktiska efterfrågan och den prognostiserade efterfrågan är ett negativt tal, blir det ett positivt. Så 25 dividerat med 4 är 6,25.
Att beräkna prognosfel med MAD-formeln fungerar bäst när den används på en produkt, eftersom efterfrågefelet inte är proportionellt. Om du använder den på föremål med olika volymer kommer resultatet att bli lite skevt för de med tyngre volymer.
Ett annat ganska enkelt sätt att beräkna prognosfel är att hitta den genomsnittliga absoluta procentandelen (MAPE) för din prognos. Statistiskt definieras MAPE som genomsnittet av procentuella fel. MAPE-formeln består av två delar: M och APE.
Formeln för APE är skillnaden mellan din faktiska och prognostiserade efterfrågan i procent:
Du beräknar sedan medelvärdet av alla procentuella fel under en given tidsperiod.
Eftersom MAPE är ett mått på ”fel” är höga siffror dåliga och låga siffror är bra.
MAPE och MAD är två av de vanligaste sätten att beräkna prognosfel, men det finns många fler. Se till att du hittar den mest lämpliga metoden för dina behov, det viktigaste är att du förstår hur korrekt du kan förvänta dig att prognoserna kommer vara.
Att beräkna prognosfelet är ett första, viktigt steg. Men beräkningarna i sig adderar naturligtvis inget värde om du inte vet hur du ska använda dem och om du inte agerar utifrån uppgifterna.
Smarta lagerplanerare använder sin statistik för prognosfel för att förfina sina prognosprocesser och förbättra den övergripande prognosnoggrannheten. Mer exakta prognoser kommer då att hjälpa till att effektivisera inköp och planering.
Såhär kan du använda prognosfelen för att förfina inköp och lagerplanering:
Vissa affärssystem och lagersystem (WMS) har funktioner för att automatiskt beräkna efterfrågan på prognosfel. Dessa kan vara användbara, men olika system har olika komplexitet och det är viktigt att du förstår begränsningarna. Ser till exempel systemet till varje enskild artikel? Vilka beräkningar används för att identifiera prognosfelet och justeras lagerparametrarna baserat på resultaten?
Ett lageroptimeringsverktyg, som EazyStock, kommer ge dig mer exakta beräkningar och automatiserar processer, så att du sparar tid och kan ta beslut baserade på bättre information.
Tycker du att det här känns utmanande? Vill du ha hjälp, eller är du nyfiken på EazyStock? Kontakta oss för en demo med en av våra experter.